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ABSTRACT 

Four-dimensional ultrasound based on matrix phased array 
transducers can capture the complex 4D cardiac motion in a 
complete and real-time fashion. However, the large amount 
of information residing in 4D ultrasound scans and novel 
applications under interventional settings pose a big 
challenge in efficiency for workflow and computer-aided 
diagnostic algorithms such as segmentation. In this context, 
a novel formulation framework of the minimal surface 
problem, called Active Geometric Functions (AGF), is 
proposed to reach truly real-time performance in 
segmenting 4D ultrasound data. A specific instance of AGF 
based on finite element modeling and Hermite surface 
descriptors was implemented and evaluated on 35 4D 
ultrasound data sets with a total of 425 time frames. 
Quantitative comparison to manual tracing showed that the 
proposed method provides LV contours close to manual 
segmentation and that the discrepancy was comparable to 
inter-observer tracing variability. The ability of such real-
time segmentation will not only facilitate the diagnoses and 
workflow, but also enables novel applications such as 
interventional guidance and interactive image acquisition 
with online segmentation. 
 

Index Terms— Image segmentation, Active Geometric 
Functions, real-time segmentation, deformable model 
 

1. INTRODUCTION 
Ultrasound is the cardiac screening modality with the 
highest temporal resolution, but its use remains limited to 
two-dimensions in most hospitals and clinical centers. 
Development of 4D (real-time 3D or RT3D) volumetric 
echocardiography started in the 1990s [1-3], with 4D 
ultrasound probes based on matrix phased arrays. Since 
RT3D ultrasound acquires volumetric ultrasound sequences 
with fairly high temporal resolution using a fixed-positioned 
transducer, it can capture complex 3D cardiac motion. With 
recent advances in 3D and 4D imaging techniques towards 
real-time imaging, the amount of data is becoming 
prohibitively overwhelming for analysis and workflow. 
Manual tracing of these large data sets is tedious and 
impractical in clinical setting.  

 In this context, automated or semi-automated 
segmentation methods have been proposed to leverage 
human efforts involved in the segmentation task. Based on 
the mathematical foundation of each method, segmentation 
approaches can be roughly divided into several classes: 
classification (e.g. thresholding, k-means), region growing 
(such as fuzzy connectedness [4]), deformable models (e.g. 
snake [5], level set [6-9]), active shape [10] and active 
appearance models [11], and stochastic methods (Markov 
random field [12], graph cut [13]). Hybrid methods [14] 
combining different existing methods were also proposed. 
Among segmentation methods, deformable models are still 
widely used in medical image analysis, especially for 
cardiac imaging.  

The first deformable model parametric formulation was 
proposed by Kass, et al in 1987 [5]. In 1998, Xu et al [15] 
proposed the Gradient Vector Flow, or GVF, to overcome 
several drawbacks in the original snake framework. In order 
to handle topological changes, especially in 3D,in the late 
1990s, Sethian, et al. [16] proposed level set framework by 
utilizing level set functions with higher dimensionality than 
the data. In 2001, Chan and Vese [17] proposed their 
famous “active contour without edges”. The driving forces 
were derived via energy minimization of the Mumford-Shah 
segmentation functional [18]. Their method has been widely 
used in ultrasound segmentation [19], brain segmentation 
[20], and many other applications. However, the 
introduction of level set functions implicitly increased the 
number of parameters of the surface model, which increases 
the demand for computational power. Although many 
optimization modifications such as narrowbanding or fast 
marching schemes were proposed, generally speaking, 
level-set framework is still a relatively “slow” approach, 
especially for 3D or 4D data. 

As imaging technology evolves, demands for real-time 
feedback also increases, mostly for interventional imaging 
and minimally-invasive surgery. In this context, a new 
framework called Active Geometric Functions (or AGF) is 
proposed in this paper to push the limits towards real-time 
segmentation. 

2. METHODOLOGY 
2.1. General Active Geometric Functions Framework 
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2.1.1. Interface Representation 
In all deformable model methods, interface representation is 
fundamental. Mathematically, there are two ways to 
represent the interface: 
 Explicit representation: that is representing the surface 

by explicitly listing the coordinates of the boundary 
points (i.e. a parametric representation). This is the 
representation that original snakes [21] used; 

 Implicit representation: that is representing the surface 
by embedding the boundary as the iso-value curves of 
some function f called the representation function. 
Level set functions [6-9] are a good example by 
embedding the interface as the zero level-set of a 
distance function.  

 
2.1.2. Geometric Function 
Most of the recent efforts in segmentation based on implicit 
interface representation have focused on the level-set 
framework, given its advantages for topological changes 
and feasibility to represent convoluted surfaces. As 
mentioned above, level set functions add one extra 
dimension beyond the dimensionality of the image data. For 
example, to represent a surface in 3D space, the level set 
function corresponding to the surface will be a tri-variate 
function. For comparison, original parametric deformable 
models only required a list of point coordinates in 3D. For 
level set, this extra dimension brings various benefits as 
well as additional computation load, which may degrade 
computational efficiency. 

By looking the opposite way of level set frameworks, it 
is very natural to think of dimensionality reduction in 
surface representation to reduce the computational 
complexity. Using terminology of interface representation, 
we are looking for a representation function which has 
fewer dimensions than the image data, i.e. using a 2D 
function to represent a 3D surface in space. We call such 
function a geometric function. 

Mathematically, in N dimensional space, we can define 
a geometric function  as a special set of 
functions representing one of the coordinates constrained by 
the others. Without losing generality, we can assume that 
this special coordinate is x0 and the other coordinates are x1 
to xN-1. That is: 

N-1:g

1

1

 . (1) 0 1( , )Nx g x x
 The corresponding representation function f is defined as: 

 . (2) 0 1( , )Nf x g x x
So that the corresponding boundary is the zero-value curve 
of the function f, i.e. f=0. 
2.1.3. Driving Forces 
Similar to other deformable models, we adopted a 
variational framework in deriving the driving forces. For 
example, we can use the Mumford-Shah segmentation 
energy functional: 
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in which C  denotes the smoothed and closed segmented 
interface, G represents the observed image data, F is a 
piecewise smoothed approximation of G with 
discontinuities only along C , and  denotes the image 
domain. Given the flexibility of variational frameworks, 
other segmentation energy functionals may also be easily 
adopted.  

For the segmentation of an N-dimensional image data 
set, the Active Geometric Functions framework will solve 
an (N-1)-dimensional variational problem; explicit 
representation will solve an N-dimensional problem; and the 
level set framework will solve an (N+1)-dimensional 
variational problem. It is obvious that AGF framework has 
advantages in dimensionality reduction when compared 
with the other two deformable models formulations, at the 
cost of some flexibility given the assumption of 1 versus 
(N-1) coordinate mapping. However, such surface mapping 
can be further modified via the combination with finite 
element models. In addition, for typical medical applications, 
biological surfaces are relatively smooth and well 
represented with relatively simple geometric functions. 
 
2.2. 4D Ultrasound Segmentation 
2.2.1. Geometric Function Setup 
AGF is a generic framework. The actual geometric function 
is not necessarily defined on Cartesian bases. Any spatial 
basis can be chosen for the purpose of efficiency in surface 
representation. In cardiac applications, given the ellipsoidal 
shape of the left ventricle, usually spherical coordinate 
system [22] or prolate spheroidal coordinates system [23] 
can be used to exploit the shape prior knowledge. Generally 
in 3D space a geometric function can be described through 
an equation v0=g(v1,v2) with coordinates (v0,v1,v2). (v0,v1,v2) 
can be (r, ,z) in cylindrical coordinate systems, (r, , ) in 
spherical coordinate systems, and ( , , ) in prolate 
spheroidal coordinate systems. In this paper, although 
prolate spheroidal coordinate systems proposed by Hunter 
[24] was used, all formulations were expressed in generic 
form and free of change in coordinate system. 

Another benefit of AGF is that it does not require using 
a single function to represent the entire surface. Piecewise 
smooth functions building on conceptual patches can be 
adopted for accuracy and flexibility. Specifically, in this 
paper, geometric functions described by a conceptual finite 
element model utilizing cubic Hermite polynomials as 
geometric function basis was used to efficiently represent 
the convoluted endocardial surface. The entire endocardial 
surface was represented by geometric functions built on a 
“mesh” composed by 8x8 conceptual patches. Given the 
dimensionality reduction of the geometric function 
representation, on each conceptual patch, a 2D cubic 
geometric function was defined, using cubic Hermite 
polynomials as basis functions. In 1D, given a normalized 
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coordinate [0,1] defined on a 1D patch, there were four 
cubic Hermite basis functions: 

 . (4) 
0 2 3 1
0 0
0 2 1 2
1 1

H ( ) = 1-3 +2 , H ( ) =  ( -1)

H ( ) =  (3-2 ), H ( ) =  ( -1)

2

On a 2D finite element patch, these four basis functions 
were associated with each local coordinate direction (  or 

), which generated a total of 16 2D basis functions. On 
each node of a four-node patch, there were four Hermite 
coefficients Hi, i = 1,2,3,4, controlling the weights of each 
basis function. Figure 1 shows an example using 3rd order 
Hermite polynomials to represent a convoluted 3D surface 
in 3D space using a single 2D finite element patch. For 
comparison, if linear quadrilateral patches were used, about 
100 linear patches would be required to represent the same 
surface with comparable accuracy. For this reason, Hermite 
polynomials are widely used in cardiac biomechanics 
studies for surface representation [25-27]. A simple 8x8 
finite element model (FEM) with intrinsic C1 continuity can 
sufficiently represent the geometry of the endocardium [26, 
27]. In our implementation, this 8x8 convention was 
followed,  

 
Figure 1: Illustration of cubic Hermite surface representation: a single 
patch with cubic Hermite representation can efficiently characterize a 
convoluted surface as shown in color, whereas 100 linear quadrilateral 
patches would be needed to achieve similar accuracy. 

2.2.2. Energy Minimization 
Following the same rationale used in the Chan and Vese 
level set [17] framework, the energy in equation (3) can be 
minimized  via a Newton Downhill method: 

 , ,i t dt i t
i

EH H dt
H

, (5) 

with dt representing the artificial time step in numerical 
iterations. It has been shown in [23] that for binary 
segmentation problem, into two partitions of the 

image domain , 

1,2

i

i

i
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 has the surface integral form of 
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with if representing the surface coefficient with respect to 
the basis function values at current surface location, c1 and 
c2 representing the average intensity values in the two 
partitions, V representing the scaling factor due to 
coordinate transformation and A representing the surface 
area. Details on the computation of this term can be found 

in [23]. The second part in the integration is a curvature 
term, which is composed by two non-linear terms involving 
Hi and scaling factors. Due to the intrinsic continuity in the 
Hermite representation, contribution from this term was 
usually very small. For this reason, and for cost-
effectiveness, this terms can be either suppressed as 
proposed in [23] or replaced by an equivalent linear term 
[22] derived from minimizing curvature instead of the 
surface area as in the original Chan and Vese framework. 
 

3. RESULTS 
The proposed method was tested on 35 4D data sets 
containing 425 frames, acquired by a Philips© iE33 
ultrasound machine during five separate canine experiments, 
with various degrees of induced ischemia as well as 
controlled stages. Each data set contained 10-15 volumetric 
frames, depending on the heart rate. Each volume was about 
200x200x200 in matrix size with pixel size of 0.8 mm in 
each dimension. For quantitative comparison purpose, 
endocardial borders for all data sets were manually traced 
by an experienced expert with a computer-aided interface. 
Eleven data sets were also traced by two other experts to 
estimate the inter-observer variability. Distances between 
two surfaces served as quantitative metrics to describe 
surface discrepancy. 

(a) (b) 
 

Figure 2: (a) Automatic initialization of the LV surface with an 
ellipspoid positioned at the center of the volume; (b) overlaid 
segmentation results from AGF (red), one expert (green), and the other 
expert (blue). All three surfaces were very close to each other. 

As shown in Figure 2a, all 425 segmentation 
experiments were initialized as a small ellipsoid (defined as 
an isosurface in prolate spheroidal coordinates) at the center 
of the image volume and aligned with the vertical direction 
of the image data, without using any prior knowledge. The 
segmentation was fully automated without any manual 
modification. A sample frame overlaying segmentation from 
AGF (red) and manual tracings from two experts (green and 
blue) is shown in Figure 2b. All three surfaces were very 
close to each other. This observation was confirmed by 
quantitative validation. On all 425 frames, the mean 
distance of AGF segmentation to manual tracing was 4.00 
mm (about 3 times the pixel diagonal dimension) with a 
standard deviation of 3.23mm; the mean distance between 
two manual tracings was 4.23mm with a standard deviation 
of 3.26mm. 

On average, it took AGF 32.9 ms to converge for one 
3D frame, on a regular Pentium 2.0GHz PC running Redhat 
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Linux, enabling a potentially 33 fps segmentation rate. Note 
that this rate is faster than the actual imaging acquisition 
rate (up to 25Hz), suggesting AGF could enable online 
segmentation. 
 

4. CONCLUSION 
Active Geometric Function (AGF) was presented as a new 
framework for deformable models. It offers significant 
advantages in computational efficiency, derived from a 
dimensionality reduction in the interface representation. It 
utilized geometric function representation, enabling easy 
partition of the image data as well as straightforward 
quantitative segmentation comparison. Moreover, besides 
providing numerical solutions to the desired optimal 
interface positioning, like a level set framework, AGF can 
use closed form expressions as well, to achieve even better 
efficiency and accuracy. The continuous form of interface 
function can also benefit downstream analysis based on 
shape or other information from the interface. The 
performance of AGF was illustrated in segmenting 4D 
ultrasound data, with comparable performance to manual 
tracing and very fast segmentation at 30ms per 3D frame. 
The ability of real-time segmentation will not only facilitate 
diagnosis, but also enable novel applications such as 
interventional guidance and interactive image acquisition 
with online segmentation. 
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